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Abstract. As a guideline for forthcoming experiments, we present predictions from Chiral Effective Field
Theory for polarized cross-sections in low-energy Compton scattering for photon energies below 170 MeV,
both on the proton and on the neutron. Special interest is put on the role of the nucleon spin polarizabilities
which can be examined especially well in polarized Compton scattering. We present a model-independent
way to extract their energy dependence and static values from experiment, interpreting our findings also
in terms of the low-energy effective degrees of freedom inside the nucleon: The polarizabilities are domi-
nated by chiral dynamics from the pion cloud, except for resonant multipoles, where contributions of the
∆(1232)-resonance turn out to be crucial. We therefore include it as an explicit degree of freedom. We also
identify some experimental settings which are particularly sensitive to the spin polarizabilities.

PACS. 13.40.-f Electromagnetic processes and properties – 13.60.Fz Elastic and Compton scattering –
14.20.Dh Protons and neutrons

1 Introduction

Over the past few decades, real Compton scattering off
the proton was established as an excellent tool to study
the polarizabilities of the nucleon —theoretically as well
as experimentally. A good overview over the various ex-
periments is given in [1]; for an overlook of the theoretical
studies cf. [2,3] and references therein. As is well known,
polarizabilities are a measure for the stiffness of the nu-
cleon in an external electric or magnetic field, caused by
the displacement of the charged constituents of the nu-
cleon, induced by the photon field. While the static values
ᾱE , β̄M of the two lowest (dipole) spin-independent polar-
izabilities are well understood, there are only few exper-
iments which are able to extract the spin polarizabilities
of the nucleon. These quantities have no simple classical
analogon, as they parameterize the stiffness of the nucleon
spin against electromagnetically induced deformations rel-
ative to the axis defined by the nucleon spin. While there
are four dipole spin polarizabilities for each nucleon [4],
the only two quantities measured so far are the static for-
ward and backward spin polarizabilities γ0 and γπ of the
proton. γ0 was extracted from the GDH experiment at
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MAMI, using a Dispersion Relation (DR) analysis [1,5]:

γ0 = (−1.01± 0.13) · 10−4 fm4 . (1.1)

A first attempt to determine γπ from experiment by the
LEGS group [6] quotes

γπ = (−27.1± 3.6) · 10−4 fm4, (1.2)

which is considerably lower than what one expected from
DR analysis and Chiral Effective Field Theory (χEFT).
An extraction from recent MAMI data, obtained at low
energies [7] and in the region of the ∆-resonance [8–10],
yields values which differ strongly (on a level of about
30%) from the LEGS value:

γπ = (−36.1± 2.2) · 10−4 fm4 [7] ,

γπ = (−37.9± 3.6) · 10−4 fm4 [8] . (1.3)

These new results agree very well with the theoretical pre-
diction from χEFT,

γπ = −36.7 · 10−4 fm4 [11], (1.4)

whereas calculations based on χEFT are at present not
able to reproduce the MAMI value for γ0, eq. (1.1)1. For

1 In the forward direction, a strong cancellation between two
large spin polarizabilities makes accurate predictions for γ0

rather difficult [3].
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further details concerning experiments and their results
see, e.g., [1].

The goal of this work is to motivate further investiga-
tions of the spin polarizabilities, where there are still so
many question marks left. Especially, we advocate double-
polarized experiments as a tool to disentangle the four
leading spin polarizabilities, and not only the two static
linear combinations given above.

Recently, it was demonstrated in [12] that nucleon po-
larizabilities can be connected to Compton multipoles and
therefore also acquire a dependence on the energy ω of the
real, incoming photon. These dispersion effects are well
known in solid state physics. In hadron stucture physics
different internal nucleonic degrees of freedom, low-lying
nuclear resonances like the ∆(1232), the charged meson
cloud around the nucleon etc., will react quite differ-
ently to real-photon fields of non-zero frequency. There-
fore, these dynamical polarizabilities contain detailed in-
formation about dispersive effects, caused by internal re-
laxation effects, baryonic resonances and mesonic produc-
tion thresholds, see [12,13] for details. As they stem from a
multipole analysis of the scattering amplitude, dynamical
polarizabilities contain all hadron structure information,
but in a more readily accessible form. In the limit of zero
photon energy, they reduce to the static polarizabilities
mentioned above.

In principle, the dynamical polarizabilities are exper-
imentally accessible by fits to Compton scattering cross-
sections. The main problem seems to be that the multi-
pole expansion allows for an a priori infinite number of
fit functions: The real photons can undergo transitions
T l → T ′l′, where T/T ′ = E or M labels the coupling of
the incoming/outgoing photon as electric or magnetic, and
l, (l′ = l ± {0; 1}) is the angular momentum of the inci-
dent (outgoing) photon. Thus, there are six, ω-dependent
dipole polarizabilities, namely the two spin-independent
ones αE1(ω) and βM1(ω) for electric and magnetic dipole
transitions which do not couple to the nucleon spin. In
the spin sector there are the two diagonal polarizabilities
γE1E1(ω) and γM1M1(ω) and the two off-diagonal spin po-
larizabilities γE1M2(ω) and γM1E2(ω). In addition, there
are higher ones like quadrupole and octupole polarizabili-
ties. In [13], however, it was shown that one can describe
unpolarized low-energy Compton scattering off the pro-
ton very well by keeping only the l = 1 (dipole) contri-
butions of the Compton multipoles. This leaves us with
six unknown functions of the photon energy that can be
expressed as the six dynamical dipole polarizabilities.

Obviously, further experiments are needed to deter-
mine these six functions, as there is, e.g., only a minor
dependence on the spin polarizabilities visible in spin-
averaged cross-sections below the pion production thresh-
old (see sect. 5). Polarized Compton scattering experi-
ments provide a new avenue for the determination of the
six dipole polarizabilities. In the seminal paper [14] on
polarized Compton scattering off a nucleon, an exhaustive
list of interesting observables and asymmetries was defined
which only now start to become accessible in this new fron-
tier of low-energy electromagnetic scattering experiments.

Guided by ongoing experimental feasibility studies at
the HIγS lab of TUNL [15], we chose a subset of four asym-
metries describing the interaction of circularly polarized
photons with polarized protons and neutrons, where the
polarization in the final states is not detected. We cover
the low-energy range, up to photon energies of∼ 170 MeV,
just above the one-pion production threshold. Like in [14],
we focus on asymmetries, dividing the difference of two
polarized cross-sections by their sum, as they are less sen-
sitive to experimental errors than differences. Further in-
vestigations involving linearly polarized photon beams are
under study [16]. We present predictions in the framework
of Chiral Effective Field Theory with explicit ∆ degrees of
freedom. Previously, a calculation of two of the asymme-
tries for polarized Compton scattering off the proton was
presented to leading-one-loop order in a χEFT with only
nucleon and pion degrees of freedom in [17]. In our analy-
sis (sects. 6 and 7) we show a comparison between the two
chiral frameworks for all asymmetries we consider, so that
∆ physics is easily identifiable. Since we investigate the
possibility of determining spin polarizabilities from exper-
iment, we put special emphasis on the role of the spin and
quadrupole (l = 2) polarizabilities of the nucleon. The lat-
ter ones will —as in [13] for the spin-averaged case— turn
out to be negligibly small, leaving only the six dynami-
cal dipole polarizabilities as unknown structure parame-
ters to be determined from data. As a starting point, one
might consequently accept the theoretical findings for the
spin-independent dipole polarizabilities αE1(ω), βM1(ω),
for which both χEFT and Dispersion analysis are in good
agreement [13]. One would then attempt to extract the
four dynamical l = 1 spin polarizabilities directly from
experiment, as will be described in sect. 4.

In [14], the authors also investigated the energy de-
pendence of various asymmetries both in a low-energy ex-
pansion in terms of nucleon polarizabilities as well as in
a full calculation in Dispersion Theory. The low-energy
expansion included the static values of the six dipole po-
larizabilities, the two static spin-independent quadrupole
polarizabilities ᾱE2, β̄M2, and the leading dispersion cor-
rections to ᾱE1 and β̄M1. Such a Taylor expansion of the
polarizabilities is bound to break down as cusps or reso-
nances are approached, the lowest of which being the one-
pion production threshold and the ∆-resonance. We will
indeed find strong signals from the spin polarizabilities as
the energy is increased. In contradistinction to [14], our
calculation is based on dynamical, i.e. energy-dependent
polarizabilities [12]. For photon energies above the pion
production threshold, we expect our predictions to be cor-
rect only qualitatively, since the imaginary parts of our
dynamical polarizabilities only correspond to tree-level ac-
curacy and the width of the ∆(1232)-resonance is treated
as a small perturbation; for details, see [13]. Whereas the
unpolarized cross-sections were found to be well described
up to 170 MeV within our theoretical framework [13], we
have to caution the reader that this does not have to be
the case for the asymmetries presented here, as these are
much more sensitive to fine details.
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The two spin configurations we investigate are de-
scribed in sect. 3, after a short repetition of the theoreti-
cal framework (sect. 2). In sect. 4, we propose a procedure
to determine spin polarizabilities from experiment, before
we have another look at spin-averaged cross-sections in
sect. 5. The results for the proton asymmetries are pre-
sented and interpreted in sect. 6, the ones for the neutron
in sect. 7. Conclusions and an appendix on the two dom-
inating Compton amplitudes complete the presentation.

2 Theoretical framework

We calculate in the framework of Chiral Effective Field
Theory with and without explicit ∆(1232) degrees of free-
dom. Details concerning the former, Heavy Baryon Chiral
Perturbation Theory (HBχPT), which contains only pions
and nucleons as explicit degrees of freedom, can be found,
e.g., in [17]. The formalism of the latter, called “Small
Scale Expansion” (SSE) —an effective chiral field theory
describing explicit pion, nucleon and ∆(1232) degrees of
freedom— is discussed in [18]. This work is based on the
calculation of dynamical nucleon polarizabilities and spin-
averaged Compton cross-sections of the proton in [13] to
which we refer the interested reader for details of our no-
tation.

Real Compton scattering can be formulated in terms
of six amplitudes2 A1–A6. The T -matrix reads

T (ω, z) = A1(ω, z)�ε ′∗ · �ε+A2(ω, z)�ε ′∗ · �̂k�ε · �̂k′

+i A3(ω, z)�σ · (�ε ′∗ × �ε ) + i A4(ω, z)�σ ·
(
�̂k′ × �̂k

)
�ε ′∗ · �ε

+i A5(ω, z)�σ ·
[(

�ε ′∗ × �̂k
)
�ε · �̂k′ −

(
�ε× �̂k′

)
�ε ′∗ · �̂k

]

+i A6(ω, z)�σ ·
[(

�ε ′∗ × �̂k′
)
�ε · �̂k′ −

(
�ε× �̂k

)
�ε ′∗ · �̂k

]
(2.1)

with �̂k (�̂k′) the unit vector in the momentum direction of
the incoming (outgoing) photon with polarization �ε (�ε ′∗).
We separate these amplitudes into pole (Apole

i ) and non-
pole (Āi) parts.

The non-pole amplitudes are also referred to as the
structure part of the amplitudes. The question whether a
contribution belongs to the structure part cannot be an-
swered uniquely. In our definition, only those terms which
have a pole either in the s-, u- or t-channel are treated
as non-structure. If we were only concerned with the
full calculation of Compton scattering cross-sections, this
separation clearly would be irrelevant because both the
structure-dependent as well as the structure-independent
part contribute. Here, however, we investigate the role of
the internal nucleonic degrees of freedom on the spin and
quadrupole polarizabilities in Compton scattering. There-
fore, we need to be able to turn off and on the different

2 These amplitudes are different from the amplitudes Ai

in [14], as we use a different basis.

nucleon polarizabilities, which are contained only in the
structure part of the amplitudes.

Expressing the l = 1 multipole expansion for nucleon
Compton scattering in terms of dynamical dipole polariz-
abilities, one obtains

Ā1(ω, z) =
4πW

M
[αE1(ω) + z βM1(ω)] ω2 +O(l = 2),

Ā2(ω, z) = −4πW

M
βM1(ω)ω2 +O(l = 2),

Ā3(ω, z) = −4πW

M

[
γE1E1(ω) + z γM1M1(ω)

+γE1M2(ω) + z γM1E2(ω)
]
ω3 +O(l = 2),

Ā4(ω, z) =
4πW

M

[
− γM1M1(ω)

+γM1E2(ω)
]
ω3 +O(l = 2),

Ā5(ω, z) =
4πW

M
γM1M1(ω)ω3 +O(l = 2),

Ā6(ω, z) =
4πW

M
γE1M2(ω)ω3 +O(l = 2). (2.2)

We choose to work in the centre-of-mass frame. Thus, ω
denotes the cm energy of the photon, M the isoscalar nu-
cleon mass, W =

√
s the total cm energy, and θ the cm

scattering angle with z = cos θ.
The structure amplitudes Ā3–Ā6 contain only spin po-

larizabilities, Ā1–Ā2 only spin-independent ones. The spin
polarizabilities γ0 (γπ) mentioned in the introduction are
the leading coefficients of Ā3 for θ = 0◦ (θ = 180◦) at zero
energy:

γ0 = −(γ̄E1E1 + γ̄M1M1 + γ̄E1M2 + γ̄M1E2),
γπ = −γ̄E1E1 + γ̄M1M1 − γ̄E1M2 + γ̄M1E2

and thus do not suffice to determine the four leading
spin polarizabilities completely. Here, γ̄i denotes the static
limit γ̄i = γi(ω = 0). A precise definition of polarizabili-
ties via the multipole expansion of the amplitudes is given
in [13].

In the following, we list all the diagrams contributing
in our leading-one-loop order (O(ε3)) calculation in the
Small Scale Expansion, which contains the leading chiral
dynamics of the pion cloud and the dominant ∆ physics
with its pionic cloud. ε is the expansion parameter of SSE
and denotes either a small momentum, the pion mass or
the mass difference between nucleon and ∆(1232). A dia-
gram at a certain order in p containing pions in the the-
ory without explicit ∆ degrees of freedom, HBχPT, con-
tributes at the same order ε in SSE.

In fig. 1, we show the four HBχPT non-structure (pole)
diagrams which contribute to an O(p3) (and therefore
also to an O(ε3)) calculation: the pole diagrams (a,b), the
Thomson term (c) and the “pion pole” (d). The pole parts
are thus given by the amplitudes of Compton scattering off
a point-like nucleon with an anomalous magnetic moment,
in addition to the π0-pole contribution in the t-channel.
In the literature, the latter contribution is sometimes clas-
sified as a structure part.
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Fig. 1. The diagrams identified as pole contributions at leading-one-loop order in HBχPT.

To O(ε3), one obtains for the non-structure amplitudes
(with the charge Q = 1 for a proton, Q = 0 for a neutron
target)

Apole
1 (ω, θ) = −Qe2

M
+O(ε4),

Apole
2 (ω, θ) =

Q2 e2 ω

M2
+O(ε4),

Apole
3 (ω, θ) =

e2 ω
(
Q (1 + 2κ)− (Q+ κ)2 cos θ

)
2M2

−(2Q− 1)
e2 gA

4π2 f2
π

ω3 (1− cos θ)
m2

π0 + 2ω2 (1− cos θ)
+O(ε4),

Apole
4 (ω, θ) = −e2 ω (Q+ κ)2

2M2
+O(ε4),

Apole
5 (ω, θ) =

e2 ω (Q+ κ)2

2M2

−(2Q− 1)
e2 gA

8π2 f2
π

ω3

m2
π0 + 2ω2 (1− cos θ)

+O(ε4),

Apole
6 (ω, θ) = −e2 ωQ (Q+ κ)

2M2

+(2Q− 1)
e2 gA

8π2 f2
π

ω3

m2
π0 + 2ω2 (1− cos θ)

+O(ε4).

(2.3)

κ is the anomalous magnetic moment of the proton or
the neutron, respectively, e the proton’s electric charge.
mπ0 is the mass of the neutral pion, fπ the pion decay con-
stant. The terms containing the axial coupling constant
gA are the contributions of the pion pole. The numerical
values we use are listed in table 1 in [13] and correspond
to [19].

Besides the pole terms, our calculation includes all
leading-one-loop order HBχPT diagrams [20]. To this or-
der, they contain only pion cloud effects around the nu-
cleon. In SSE, the diagrams at order ε3 in addition to
the HBχPT ones are the ∆π continuum and ∆ pole di-
agrams [11,21]. As all these diagrams have already been
sketched in [13], we refrain from showing them once again
and refer the interested reader to figs. 2-4 in [13]. We em-
phasize that there is no difference in the structure part of
the amplitudes between proton and neutron up to O(ε3).
Therefore, our non-pole amplitudes describe an isoscalar
nucleon and the only difference between the two nucleons
comes in via the pole amplitudes eq. (2.3). As the ana-
lytic expressions for the structure amplitudes are rather
lengthy, we refer the reader to [13] for a complete listing.

As discussed in [13] we require two additional opera-
tors, which are energy-independent and contribute only to

the spin-independent dipole polarizabilities. These terms
are formally O(ε4), but turn out to be anomalously
large [13] and therefore have to be taken into account
already at leading-one-loop order. Their numerical values
are determined by a fit to unpolarized Compton scattering
data. The static, spin-independent dipole polarizabilities
ᾱE and β̄M thus obtained are in excellent agreement to
and of comparable uncertainty as the results from alter-
native extractions, see [13] for details.

We now turn to the formalism of Compton cross-
sections.

3 Cross-sections and asymmetries
—formalism

The well-known formula for Compton cross-sections in the
cm frame is

dσ
dΩ

∣∣∣∣
cm

=
(

M

4πW

)2

|T |2 . (3.1)

In [13], we showed results for unpolarized proton cross-
sections, which are derived by averaging over the initial
and summing over the final spin states. Now, we concen-
trate on spin-polarized cross-sections for proton and neu-
tron, albeit we will return briefly to spin-averaged ones in
sect. 5.

Triggered by a forthcoming proposal on polarized
Compton scattering off 3He at the HIγS lab of TUNL [15],
we choose the incoming photon to be right-circularly po-
larized,

�ε =
1√
2


1
i
0




and moving along the positive z-direction, while the final
polarization and nucleon spin remain undetected. The two
nucleon spin configurations we investigate are

1) the difference between the target nucleon spin pointing
parallel or antiparallel to the incident-photon momen-
tum

dσ↑↑
dΩcm

− dσ↑↓
dΩcm

;

2) the difference between the target nucleon spin aligned
in the positive or negative x-direction:

dσ↑→
dΩcm

− dσ↑←
dΩcm

.



R.P. Hildebrandt et al.: Spin polarizabilities of the nucleon from polarized low-energy Compton scattering 333

The first arrow in our notation denotes the direction
of the incoming, right-circularly polarized photon, the sec-
ond one the direction of the nucleon spin.

The corresponding formulae for |T |2 can already be
found in [17], albeit there they are given only for real
amplitudes A1–A6. As is well known, these amplitudes
become complex for a photon energy above the pion pro-
duction threshold ωπ. Including the imaginary part of the
amplitudes, the formulae read

1
2
(|T |2↑↑ − |T |2↑↓) = −Re[A1 A

∗
3] (1 + cos2 θ)

−
[
|A3|2 + 2 |A6|2 + 2 |A5|2 cos2 θ +Re[A6 (A∗

1 + 3A∗
3)]

+
(
Re[A3 (3A∗

5 +A∗
4 −A∗

2)] + Re[A5 (4A∗
6 −A∗

1)]
)
cos θ

+Re[A5 (A∗
2 −A∗

4)] sin
2 θ

]
sin2 θ (3.2)

and

1
2
(|T |2↑→ − |T |2↑←) =[
Im[A1 (A∗

3 + 2A∗
6 + 2A∗

5 cos θ)] cos θ

+Im[A1 A
∗
4] (1 + cos2 θ)− Im[A2 (A∗

3 + 2A∗
6)] sin

2 θ

−Im[A2 (A∗
4 + 2A∗

5)] cos θ sin2 θ

]
sin θ sinφ

+
[
Re[A3 (A∗

3 −A∗
1 + 2A∗

6)] cos θ

+Re[A3 A
∗
5] (3 cos2 θ − 1)

+
(
Re[A1 A

∗
5] + Re[A2 A

∗
3]

+Re[A6 (A∗
2 +A∗

4 − 2A∗
5)]

)
sin2 θ

+Re[A3 A
∗
4] (cos

2 θ + 1)

+Re[A5 (A∗
2 −A∗

4 − 2A∗
5)] cos θ sin2 θ

]
sin θ cosφ .

(3.3)

Here, φ is the angle between the reaction plane and the
plane spanned by the momentum of the incoming pho-
ton and the target nucleon spin. Obviously, the differ-
ence eq. (3.3) takes on the largest values —at least below
the pion production threshold— for φ = 0. Therefore, we
choose the nucleon spin in the reaction plane, which sim-
plifies eq. (3.3) considerably. Using left- instead of right-
circularly polarized photons changes only the overall sign
in eqs. (3.2) and (3.3).

For comparison, we show once again |T |2 for the spin-
averaged cross-section [17], which can be derived by taking
the sum instead of the difference in eq. (3.2) (or as well in

eq. (3.3)):

1
2
(|T |2↑↑ + |T |2↑↓) =

1
2
|A1|2 (1 + cos2 θ)

+
1
2
|A3|2 (3− cos2 θ) +

[
1
2
|A4|2 (1 + cos2 θ)

+
1
2
|A2|2 sin2 θ + |A5|2 (1 + 2 cos2 θ)

+3 |A6|2 + 4Re[A3 A
∗
6] + 2Re[A4 A

∗
5] cos

2 θ

+
(
−Re[A1 A

∗
2] + Re[A3 (A∗

4 + 2A∗
5)]

+2Re[A6 (A∗
4 + 3A∗

5)]
)
cos θ

]
sin2 θ . (3.4)

The asymmetries we consider3 are

Σz =
|T |2↑↑ − |T |2↑↓
|T |2↑↑ + |T |2↑↓

, (3.5)

Σx =
|T |2↑→ − |T |2↑←
|T |2↑→ + |T |2↑←

. (3.6)

Σ is a frame-independent quantity, as the frame-
dependent flux factor cancels in the ratio between dif-
ference and sum of the cross-section, while |T |2 can be
written in terms of the frame-independent Mandelstam
variables.

From the experimentalist’s point of view, it is more
convenient to measure the asymmetry —i.e. the difference
divided by the sum— instead of the differences eqs. (3.2)
and (3.3), as the former is more tolerant to systematic
errors in experiments. Nevertheless, we have to caution
the reader that division by a small quantity, say a small
spin-averaged cross-section, may enhance theoretical un-
certainties. Sensitivity to the nucleon structure, e.g. the
spin polarizabilities, may be lost by dividing the difference
by the sum. Whenever this happens in sects. 6 and 7, we
will give hints in the text, but we refrain from showing
our results for the differences eqs. (3.2), (3.3) for reasons
of compactification, as there is no hope to compare with
experimental data for absolute values of polarized Comp-
ton cross-sections within the next few years.

4 Extracting spin polarizabilities from
experiment

A first step in determining dynamical spin polarizabili-
ties from experiment might be to accept our findings for
the spin-independent dipole polarizabilities αE1(ω) and
βM1(ω), which show very good agreement with Disper-
sion Relation analysis up to about 170 MeV [13]. Trun-
cating at l = 1, this leaves no unknowns in A1 and A2. As
higher polarizabilities are negligible, the spin-dependent
dipole polarizabilities could then be fitted to data sets
which combine polarized and spin-averaged experimental

3 Σz corresponds to Σ2z in the notation of [14], Σx to Σ2x.
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Fig. 2. Complete O(ε3) SSE predictions (dashed line) for the spin-averaged proton cross-section; dotted line: spin polarizabilities
not included; dot-dashed line: quadrupole polarizabilities not included. ωπ denotes the pion production threshold.

results, taken at a fixed energy and varying the scatter-
ing angle. As starting values for the fit, one might use our
χEFT results [13], as indicated in eq. (4.1), where we show
the spin structure amplitudes up to l = 1 with the polar-
izabilities γi(ω) replaced by γi(ω)+ δi, introducing the fit
parameters δi. Small fit parameters mean correct predic-
tion of the dynamical spin dipole polarizabilities within
the Small Scale Expansion.

Āfit
3 (ω, z) = −4πW

M

[
(γE1E1(ω) + δE1E1)

+z (γM1M1(ω) + δM1M1) + (γE1M2(ω) + δE1M2)

+z (γM1E2(ω) + δM1E2)
]
ω3 ,

Āfit
4 (ω, z) =

4πW

M

[
− (γM1M1(ω) + δM1M1)

+(γM1E2(ω) + δM1E2)
]
ω3 ,

Āfit
5 (ω, z) =

4πW

M
(γM1M1(ω) + δM1M1)ω3 ,

Āfit
6 (ω, z) =

4πW

M
(γE1M2(ω) + δE1M2)ω3 . (4.1)

Thus, one obtains the spin dipole polarizabilities at a def-
inite energy. Repeating this procedure for various energies
gives the energy dependence, i.e. the dynamics of the l = 1
spin polarizabilities. Therefore, the amplitudes eq. (4.1)
provide one possible way to extract dynamical spin po-
larizabilities directly from the asymmetry observables of
the previous section, using χEFT. Note that the δi may
show a weak energy dependence. At first trial, they can be

taken as energy-independent quantities. This corresponds
to a free normalization of the spin dipole polarizabilities,
assuming the energy dependence derived from χEFT to be
correct. This assumption is well justified, as at low energies
only ∆(1232) and pion degrees of freedom are supposed
to give dispersive contributions to the polarizabilities.

5 Spin contributions to spin-averaged
cross-sections

Before discussing the asymmetries in detail, we briefly
turn to the question of which polarizabilities are seen in
unpolarized Compton cross-sections, discussing the O(ε3)
SSE results partially given already in [13]. As shown in
fig. 2, we find a large contribution of the dynamical spin
polarizabilities to spin-averaged Compton cross-sections
on the proton above ω ∼ 100 MeV. We also show our
so far unpublished results for the neutron (fig. 3), ex-
hibiting a huge sensitivity to the spin polarizabilities in
the backward direction. This can be well understood, as
the right-hand side of eq. (3.4) simplifies to |A1|2 + |A3|2
for θ = 0◦ and θ = 180◦. In the forward direction, the
spin-independent amplitude |A1|2 dominates, while in the
backward direction the spin-dependent amplitude |A3|2 is
dominant, as can be seen in appendix A.

We note also again that any effects of quadrupole po-
larizabilities are invisible at the level of the unpolarized
cross-sections, as has already been found in [13] for the
proton. It suffices therefore to terminate the multipole
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Fig. 3. Spin-averaged neutron cross-section; for notations see fig. 2.

expansion eq. (2.2) at the dipole level, which leaves the
six dipole polarizabilities as parameters.

While effects from the spin polarizabilities are non-
negligible in unpolarized experiments, to extract all four
of them from such data is clearly illusory. Thus, double-
polarized experiments as discussed in the rest of this ar-
ticle are necessary additional ingredients in a combined
multipole analysis.

6 Proton asymmetries

We therefore turn now to the results for the asymmetries
of the proton. Analogously to the previous section, we
confirm for each observable that the quadrupole polariz-
abilities are negligible. Thus, the multipole expansion of
the amplitude can always be truncated at the dipole level,
leaving at most six parameters. However, it will turn out
that not all asymmetries are equally sensitive to the spin
polarizabilities. As expected, most asymmetries are indeed
governed by the pole part of the amplitudes.

In order to determine which asymmetries are most sen-
sitive to the structure parts of the Compton amplitudes,
and which of the internal low-energy degrees of freedom
in the nucleon dominate the structure-dependent part of
the cross-section, we will first compare three scenarios for
each asymmetry: i) the result when only the pole terms of
the amplitudes are kept; ii) the same when the effects from
the pion cloud around the nucleon are added, as described
by the leading-one-loop order HBχPT result; and finally
iii) a leading-one-loop order calculation in SSE, including
also the ∆ as dynamical degree of freedom.

An ideal asymmetry should thus fulfill three criteria:
It should be large to give a good experimental signal, it
should show sensitivity to the structure amplitudes, and it
should allow a differentiation between the pion cloud and
∆-resonance contributions in resonant channels, revealing
as much as possible about the role of at least these low-
energy degrees of freedom in the nucleon. In sect. 7, we will
repeat this presentation for the neutron asymmetries. To
simplify the connection to experiment, we give the scat-
tering angle in the following plots in the lab frame.

Similar plots for the nucleon asymmetries have already
been shown in [14], using Dispersion Theory techniques.
Direct comparison to those plots is however not possi-
ble because of a different choice of angles —the authors
of [14] concentrated on the extreme angles 0◦, 90◦, 180◦,
whereas we cover the whole experimentally accessible an-
gular spectrum. Nevertheless, qualitative agreement be-
tween our χEFT results and [14] can be deduced.

We emphasize also that our predictions are parame-
ter free, as all constants are determined from unpolarized
Compton scattering on the proton, [13]. In the following
the fit parameters δi introduced in eq. (4.1) are all set to
zero, as no measured asymmetries exist at this point.

6.1 Nucleon spin parallel photon momentum

6.1.1 Comparison: pole, HBχPT and SSE calculation of Σp
z

As one can see in fig. 4, the proton asymmetry Σp
z reaches

values of O(1) and is therefore quite large, although it
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Fig. 4. O(p3) HBχPT (short-dashed line) and O(ε3) SSE predictions (long-dashed line) for the proton asymmetry Σp
z ; the solid

line describes the third-order pole contributions. ωπ denotes the pion production threshold.

vanishes for ω = 0, due to the vanishing difference and
the finite static spin-averaged cross-section, given by the
familiar Thomson limit. This is valid independently of the
scattering angle.

Comparing the three curves in fig. 4 —third-order pole,
O(p3) HBχPT and O(ε3) SSE— one recognizes the strong
influence of the pole amplitudes, given by eq. (2.3). This is
exactly what one expects for the charged proton, and can
also be deduced from eqs. (2.2), (2.3), (3.2): The asym-
metry starts linearly in ω, while the leading term of the
structure part of Σp

z is proportional to ω3, as there is
no term in eq. (3.2) that contains only spin-independent
amplitudes. As we are interested in information about the
structure of the nucleon, i.e. in the deviation of the dashed
lines from the solid (pole contributions only) line in fig. 4,
and as this deviation is not as strong as later in Σp

x and
in the neutron asymmetries, Σp

z does not seem to be the
ideal choice among the considered quantities to examine
the nucleon structure.

Concerning the explicit ∆ degrees of freedom, we see
sizeable contributions only above ωπ. The only exception
is noticed in the extreme forward direction, but this is an
artifact of the asymmetry, which is extremely sensitive at
small angles due to the small spin-averaged cross-section
at ωπ (fig. 2), and neither visible in the difference, de-
scribed by eq. (3.2), nor in the spin-averaged cross-section.

The structure of Σp
z varies a lot for the different angles.

It is negative in the forward and positive in the backward
direction. This can be explained —at least for low energies
(≤ 120 MeV)— looking at the amplitudes A1 and A3 in

fig. 12 below because for θ = 0◦ and θ = 180◦ the right-
hand side of eq. (3.2) reduces to −2A1 A3. The proton
amplitude A3 starts with a falling slope in the forward
and with a rising slope in the backward direction, while
A1 is negative below the pion production threshold for
all angles under consideration. The spin-averaged cross-
section is positive for all angles and energies by definition.

At ωπ ≈ 131 MeV in the cm system, the cusp at
the pion production threshold is clearly visible for most
of the angles. This cusp arises since the amplitudes be-
come complex at the threshold. Polarized cross-sections
are much more sensitive to the fine structure of the nucleon
than their unpolarized pendants. Therefore, our results
might considerably deviate from experiment above thresh-
old, due to sizeable uncertainties in our imaginary parts.
Nevertheless, qualitative agreement should be fulfilled, so
we use the same plot range as for the unpolarized re-
sults in [13], with a maximum photon energy of 170 MeV.
In [14], the plots end below threshold since the low-energy
expansion of the polarizabilities used in [14] cannot repro-
duce the non-analyticity of the pion production threshold.

6.1.2 Spin and quadrupole contributions to Σp
z

The asymmetry (fig. 5) exhibits only a weak dependence
on the spin polarizabilities in the forward direction be-
low ωπ, which is no surprise, as in fig. 12 below there
are nearly no structure contributions to Ap

3 visible below
100 MeV. The largest sensitivity on the γi’s is noted at
around 110◦, whereas in the extreme backward direction
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Fig. 5. Proton asymmetry Σp
z ; for notations see fig. 2.

the dependence on the spin polarizabilities partly cancels
in the division of the difference by the sum.

The sharp rise of the result without spin polarizabil-
ities in fig. 5 above the pion production threshold in the
forward direction is due to a sharply rising difference and
the small spin-averaged cross-section which enters the de-
nominator presented in fig. 2.

In the literature, e.g. in [6], the pion pole (fig. 1d) is
often considered as one of the structure diagrams, giving
a contribution to the static backward spin polarizability
γπ, which is much larger than all the other contributions.
We treat the term as pole, as it contains a pion pole in the
t-channel. So the question arises of why we are sensitive
to the spin polarizabilities, despite having removed this
supposedly dominant part from them. The reason is that
the pion pole dominates over the structure part of γπ only
for low energies. The pion pole contribution to γπ(ω) de-
scribes a Lorentzian (eq. (2.3)) and becomes smaller than
the structure contribution above 100 MeV, as the latter
one rises due to the increasing values of γE1E1(ω) and
γM1M1(ω) [13].

It is crucial to notice that the quadrupole polarizabil-
ities (l = 2) play again a negligibly small role, see fig. 5.
The most important quadrupole contribution is observed
at 70◦ and 150◦, but the relative size is still < 0.1 and
therefore presumably within the experimental error bars.
As repeatedly stated, that these contributions are small
is mandatory if one wants to determine spin polarizabil-
ities via polarized–cross-section data, because only then
can the multipole expansion be truncated at l = 1 as in
eqs. (2.2), (4.1).

6.2 Nucleon spin perpendicular to photon momentum

6.2.1 Comparison: pole, HBχPT and SSE calculation of Σp
x

The asymmetry Σp
x in fig. 6 looks quite similar for the

different angles: It always starts with a falling slope and
exhibits a sharp minimum at the pion cusp, therefore stay-
ing negative in a wide energy range. This behaviour is no
surprise, as the leading term in eq. (3.3) for the proton for
θ ≈ 0◦, θ ≈ 180◦, i.e. sin2 θ ≈ 0, is A3 (A3−A1) sin θ cos θ,
which is the only term including A1 and therefore dom-
inating for low energies, as Ap

1 contains the Thomson
limit. In both the forward and the backward direction
A3 − A1 > 0, and A3 < (>) 0 for small (large) angles
and low energies. The factor cos θ gives an additional mi-
nus sign in the backward direction.

Even more striking than for Σp
z is the weak sensitivity

of the asymmetry Σp
x to explicit ∆ degrees of freedom.

Once again, the only exception to this rule is the extreme
forward direction because of the small spin-averaged cross-
section which enhances the small deviations between the
HBχPT and the SSE calculation of the difference eq. (3.3)
and makes Σp

x extremely sensitive to errors. Therefore, we
consider the forward-angle regime as inconvenient for mea-
suring proton asymmetries. In the other panels of fig. 6
the ∆-dependence cancels in the asymmetry, whereas we
found the ∆(1232)-resonance to give sizeable contribu-
tions to both the difference and the sum. This is one exam-
ple that an asymmetry actually hides interesting physical
information.

The dominance of the pole amplitudes is —as in Σp
z—

clearly visible. The argument is the same as the one given
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Fig. 6. Proton asymmetry Σp
x; for notations see fig. 4.

Fig. 7. Proton asymmetry Σp
x; for notations see fig. 2.
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Fig. 8. Neutron asymmetry Σn
z ; for notations see fig. 4.

in sect. 6.1. Nonetheless, we find Σp
x more sensitive to the

nucleon structure than Σp
z , especially around ωπ.

6.2.2 Spin and quadrupole contributions to Σp
x

As one can see in fig. 7, Σp
x is very sensitive to the spin

polarizabilities for all angles. Therefore —and because of
our findings in the previous subsection— this configura-
tion (nucleon spin perpendicular to the photon momen-
tum) seems to be more convenient than the spin parallel
photon momentum, to examine the spin structure of the
nucleon. In the backward direction, the spin dependence
of the asymmetry is less pronounced than in the forward
direction.

The quadrupole contributions are extremely small.

7 Neutron asymmetries

In the absence of stable single-neutron targets, the follow-
ing results for the neutron have to be corrected for bind-
ing and meson exchange effects inside light nuclei, a task
which will be the scope of future work. Here, we present
the neutron results to guide considerations on future ex-
periments using polarized deuterium or 3He, e.g. [15].

As in the proton case, the neutron asymmetries reach
quite large values of O(1) as the photon energy increases.
In the neutron, pole contributions might be expected to
be small, because it is uncharged and thus only the pion
pole and anomalous magnetic moment contribute. On the

other hand, spin polarizabilities are then not enhanced
by the interference with large pole amplitudes. Therefore,
whether and which neutron asymmetries are sensitive to
the structure parts, and hence to the γi’s, must be inves-
tigated carefully.

We follow the same line of presentation as outlined
at the beginning of sect. 6 for the proton asymmetries:
First, we investigate which internal degrees of freedom
are seen in a specific asymmetry, and then show that
quadrupole polarizabilities give negligible contributions.
Thus, the asymmetries most sensitive to spin polarizabil-
ities are identified.

7.1 Nucleon spin parallel photon momentum

7.1.1 Comparison: pole, HBχPT and SSE calculation of Σn
z

Comparing fig. 8 to the proton analogs, figs. 4 and 6,
we notice that the neutron is much more sensitive to the
structure amplitudes. The pole curves show only a weak
energy dependence, so that nearly the whole dynamics
is given by the neutron polarizabilities. This minor influ-
ence of the pole amplitudes is due to the vanishing third-
order pole contributions to A1 and A2, which make the
difference eq. (3.2) start with a term proportional to ω2,
whereas the leading structure part is O(ω3). The spin-
averaged cross-section starts with ω2, rendering the finite
static values of Σn

z . The angular dependence of this static
value can be derived from eqs. (2.3), (3.2), (3.4) as

Σn
z (ω = 0, θ) =

4 sin2 θ

−5 + cos(2 θ)
. (7.1)
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Fig. 9. Neutron asymmetry Σn
z ; for notations see fig. 2.

The structure sensitivity of the neutron is also visible in
the huge sensitivity of Σn

z to the ∆-resonance which in-
fluences the polarized cross-sections considerably even for
very low energies. As is well known, the influence of the
∆(1232) increases with increasing angle.

Concerning the shape of the asymmetry, one recognizes
a similar behaviour for the whole angular spectrum. It
always reaches a local minimum at the pion cusp. A precise
interpretation of the shape of Σn

z is hard to give, as the
denominator has the leading power ω2, while it was ω0 in
the proton case.

7.1.2 Spin and quadrupole contributions to Σn
z

Figure 9 shows that there are sizeable spin contributions
to the asymmetry Σn

z for each angle, but for θ = 110◦
they nearly completely vanish below the pion production
threshold. The reason is the cancellation in the division of
the difference by the sum. Nevertheless, one recognizes a
decreasing spin dependence with increasing angle, which
can again be explained by A1 and A3. In the forward direc-
tion, Apole

3 starts with a falling slope and stays negative for
the energy range we are considering. Adding the structure
part of A3, i.e. including the spin polarizabilities, the am-
plitude changes sign roughly at the pion mass. Therefore
we see a completely different behaviour of A1 · Apole

3 and
A1 ·A3 in the forward direction. In the backward direction
A1, A3 and Apole

3 are all positive below ωπ, resulting in
very similar curves.

As in the proton case we find the quadrupole part to
be negligibly small within the accuracy of this analysis
(fig. 9).

7.2 Nucleon spin perpendicular to photon momentum

7.2.1 Comparison: pole, HBχPT and SSE calculation of Σn
x

The shape of the asymmetry Σn
x in fig. 10 with the

minimum at ωπ is similar to Σn
z (fig. 8), at least in

the forward direction. The curve is shifted downward
with increasing angle θ. An explanation for this be-
haviour can be given, though it is not obvious, as for
θ ≈ 0◦, θ ≈ 180◦ there remain five terms in eq. (3.3):
[A3 (A3−A1) cos θ+A3 A4 (1+cos2 θ)+A3 A5 (3 cos2 θ−
1)+2A3 A6 cos θ] sin θ ≈ [A3 (A3−A1) cos θ+2A3 (A4+
A5+A6 cos θ)] sin θ. As can be read off eq. (2.3), the lead-
ing pole terms —which are linear in ω— vanish in the sum
A4 + A5 + A6 cos θ. Therefore, the lowest order in ω of
A3 (A4 + A5 + A6 cos θ) is ω4, since the spin-dependent
structure amplitudes start with ω3. This is two orders in
ω above the leading order of A3 (A3 − A1) cos θ, which
therefore is the leading term for small energies —at least
for θ in the range from 30◦ to 150◦. As can be read off
appendix A, the product A1 A3 is negative for low ener-
gies in the forward direction, leading to a positive slope
of the difference and therefore to positive values for the
asymmetry. In the backward direction, (A3 −A1), as well
as A3, is positive, which gives a negative asymmetry as
cos θ < 0. The angular dependence of the static value is
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Fig. 10. Neutron asymmetry Σn
x ; for notations see fig. 4.

determined by the pole contributions. It is

Σn
x (ω = 0, θ) =

4 sin θ cos θ
5− cos(2 θ)

, (7.2)

but as for Σn
z , the dynamics of Σn

x is completely domi-
nated by the neutron polarizabilities.

Another interesting feature in fig. 10 is the fact, that
the explicit ∆ degrees of freedom only play a minor role
in the forward direction but dominate for large angles.

7.2.2 Spin and quadrupole contributions to Σn
x

Turning to fig. 11, Σn
x exhibits of all asymmmetries by far

the largest sensitivity to the spin polarizabilities. There-
fore, an experiment with the nucleon spin aligned per-
pendicular to the photon momentum seems from the the-
orist’s point of view to be the most promising of the
considered configurations to extract the spin polarizabil-
ities. The weakest dependence on the γi’s at low ener-
gies of Σn

x occurs in the extreme forward direction. This
again can be explained looking at A1 and A3 (fig. 12):
In the backward direction, Apole

3 < A3 and therefore also
(Apole

3 − A1) < (A3 − A1), giving a much larger absolute
value when spins are included. In the forward direction,
A3 differs weakly from Apole

3 for ω ≤ 110 MeV, so that
spin polarizability effects appear only for higher energies.

As in Σn
z , the quadrupole polarizabilities in Σn

x are
negligibly small (fig. 11). One observes the strongest con-
tributions around θ = 90◦; a simple answer to this phe-
nomenon cannot be given, albeit it is clear that Σn

x should

be most sensitive at a scattering angle around 90◦, as
the overall factor sin θ reaches its maximum (eq. (3.3)),
but this is a general feature and not only concerning the
quadrupole polarizabilities.

So as a short conclusion of sects. 6 and 7 we find a
much stronger sensitivity of the neutron asymmetries to
the nucleon structure, while the proton asymmetries are
dominated by pole terms up to at least 50 MeV. Contribu-
tions of the ∆(1232)-resonance are crucial only for certain
asymmetries and angles. For both nucleons, the spin con-
figuration Σx turned out to be more sensitive to the nu-
cleon spin structure than Σz. Dynamical quadrupole con-
tributions are negligible in each of the considered cases.

8 Conclusion

In this work, we examined spin-averaged and double-
polarized nucleon Compton cross-sections in the frame-
work of Chiral Effective Field Theory as a guideline for
future experiments. Our goal was to identify those ex-
perimental settings which are most likely to be sensitive
to the four leading spin polarizabilities of the proton and
neutron. These quantities parameterize the stiffness of the
nucleon spin against electromagnetically induced defor-
mations of definite multipolarity and non-zero frequency.
Their energy dependence gives profound insight into the
dispersive behaviour of the internal degrees of freedom of
the nucleon, caused by internal relaxation effects, bary-
onic resonances and mesonic production thresholds, see
also [12,13] for details.
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Fig. 11. Neutron asymmetry Σn
x ; for notations see fig. 2.

Fig. 12. O(ε3) SSE results for the real parts of the amplitudes A1 (dark) and A3 (light); the dashed line is the full O(ε3) SSE
result, the solid line the third-order pole contribution, given in eq. (2.3); the upper (lower) panels show the proton (neutron)
results. Recall that for the neutron, Apole

1 = 0.
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In the spin-averaged cross-sections, sect. 5, we found
significant deviations between predictions with and with-
out spin polarizabilities. Therefore, spin-averaged experi-
ments can contribute to a direct determination of dynam-
ical spin polarizabilities from data, too.

In the polarized case, sects. 6 and 7, we considered
configurations with a right-circularly polarized incident
photon and a polarized target nucleon, leaving the spins of
the particles in the final state undetected. We investigated
the dependence of the cross-sections and asymmetries on
the spin polarizabilities in two different spin configura-
tions: i) nucleon spin parallel minus antiparallel to the
photon momentum, and ii) perpendicular to it but still
inside the reaction plane. We noted a stronger sensitivity
in the asymmetry Σx of configuration ii) for both proton
and neutron targets, than in case i). We found further-
more that only two of the structure amplitudes, namely
A1 and A3, dominate all cross-sections and asymmetries.

The spin polarizabilities give usually the clearest signal
for photon energies above 100 MeV, say around the pion
production threshold (∼ 130 MeV), where most of the
asymmetries also reach O(1). In the backward direction,
the neutron asymmetries also show a strong sensitivity to
the physics of the ∆(1232)-resonance, in addition to con-
tributions from the chiral pion cloud around the nucleon.

In general, the neutron asymmetries were found to be
more sensitive to the spin polarizabilities than the pro-
ton analogs. This is no surprise, since Compton scattering
on the charged proton is dominated by the pole ampli-
tudes. Besides the resulting minor sensitivity to the nu-
cleon structure, another disadvantage of the proton asym-
metries is the small spin-averaged cross-section around
the pion production threshold for small angles, which en-
hances theoretical uncertainties. Again, we emphasize that
up to leading-one-loop order the only difference between
proton and neutron is given by the pole contributions,
i.e. the structure part of our amplitudes is the one of
an isoscalar nucleon. Polarized cross-sections, which are
calculated in this approximation, might therefore devi-
ate from experimental results, especially for the neutron,
where the pole contributions are weak. Hints on impor-
tant isovector contributions are given in [22], where the
non–pion-pole contribution to the backward spin polariz-
ability γπ of the neutron was found to be about twice as
large as the corresponding proton value.

Contributions of the quadrupole polarizabilities turned
out to be negligibly small, as in the spin-averaged case [13].
Therefore, like spin-averaged observables, spin-polarized
cross-sections are well described by only six energy-
dependent functions: the two spin-independent and four
spin dipole polarizabilities. This led us in sect. 4 to pro-
pose to extract the energy dependence of the four spin
polarizabilities of the individual nucleons by a model-
independent multipole expansion of the structure ampli-
tudes from a combination of polarized and unpolarized
precision experiments. Chiral Effective Field Theory with
explicit ∆(1232) degrees of freedom represents correctly
the symmetries and low-energy degrees of freedom inside
the nucleon in a model-independent way. One can there-

fore in a first step accept our predictions of the energy
dependence of the polarizabilities as induced by dispersive
effects and only fit their overall normalization to experi-
ment, thus obtaining their static values. At present, only
two linear combinations, γ0 and γπ, were measured exeri-
mentally on the proton at LEGS [6] and MAMI [7,8], with
partially conflicting values.

Clearly, the lack of free-neutron targets makes an ex-
tension of the work presented here to light nuclei manda-
tory if experiments are to be interpreted, especially in
the light of feasibility studies on Compton scattering on
the deuteron and 3He at HIγS/TUNL [15]. Work is there-
fore under way to consider spin-polarized observables on
these configurations [16], utilizing the chiral potential ap-
proach [23] and extending already existing calculations on
unpolarized Compton scattering off light nuclei in Chi-
ral Effective Field Theories [24]. Further investigations in-
volving linearly polarized photon beams are also in prepa-
ration [16]. We are therefore confident that such future ex-
periments will further our understanding of a fundamental
property of the nucleon: the response of its effective low-
energy degrees of freedom, and in particular of its spin,
in electric and magnetic fields, as parameterized in the
dipole polarizabilities.
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tality. This work was supported in part by the Bundesmin-
isterium für Forschung und Technologie, and by Deutsche
Forschungsgemeinschaft under contract GR1887/2-1 (H.W.G.
and R.P.H.).

Appendix A. Dominant amplitudes at low
energies

In fig. 12, we plot A1 and A3 at forward and backward
angles, as we found in sects. 5, 6 and 7 many low-energy
features in our results for polarized and unpolarized cross-
sections that can be explained by considering only these
two amplitudes. The amplitudes of the uncharged neutron
vanish for ω = 0 while the static value of Ap

1 is given
by the Thomson limit. The clear cusp structure arises
from αE1(ω) in A1 and from γE1E1(ω) in A3, cf. eq. (2.2)
and [13].
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